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1 Introduction and summary

In the last few years, there has been significant progress [1–8] in computing the entropy

of four-dimensional black holes in string theory beyond the large charge estimate. On

the macroscopic side, the dominant contribution to the entropy is given by Bekenstein-

Hawking formula and the sub-leading corrections are found by studying higher derivative

corrections to the effective action of string theory. In the presence of such higher derivative

effects, the definition of the thermodynamic entropy is modified and one has to use the

Wald formula [9–11] which generalizes the Bekenstein-Hawking entropy. For extremal black

holes, this can be summarized elegantly by the entropy function formalism [12].

What made the higher-derivative problem tractable is the understanding of the off-

shell formulation of N = 2 supergravity in four dimensions and the attractor equations
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of this theory which make it simple to find and analyze black hole solutions. The higher

derivative terms analyzed are packaged as corrections to the prepotential [5]. In another

analysis [7], a different combination of the higher derivative terms — the Gauss-Bonnet

interaction — was studied and found to correctly capture the entropy to sub-leading order.

It is still not very clear why only a subset of all possible four derivative corrections correctly

captures the sub-leading entropy.

It is natural to ask whether this analysis can be carried over to other dimensions. In five

dimensions, there has been work [13] on understanding a certain class of higher derivative

corrections, namely the gravitational Chern-Simons term and other terms related to it by

supersymmetry. This action was used to find black hole solutions in [14–17] and corrections

to the entropy of five dimensional black holes were computed. Further references on sub-

leading corrections to the five dimensional solutions in the presence of higher derivative

terms include [18–20].

In this paper, we compute the statistical entropy of a 5d black hole with a given set

of charges to sub-leading order in a large charge expansion. We find that the sub-leading

corrections match those found by the macroscopic analysis. The black hole we analyze is

the one in which the first accurate microscopic computation of the leading entropy was

done [21], the D1-D5-p black hole in type IIB string theory on K3. The theory has 16 real

supersymmetries and the black hole preserves four of them.

1.1 Microscopic counting

For four dimensional black holes, the exact counting of microstates beyond the large charge

estimate has been achieved in N = 4 string theory using the construction of the partition

function for 1/4 BPS dyons in terms of an auxilliary mathematical function called the Igusa

cusp form, the unique weight 10 modular form of Sp(2, Z). The degeneracy of states can

then be counted by performing an inverse fourier transform of this function using contour

and saddle point methods. This counting formula was originally conjectured in [22] and

then derived in [23, 24] using a D-brane-monopole setup, and generalized to the counting

of all dyons in [25].

The derivation uses the relation of the 4d black holes in question to a three charge

spinning black hole in five dimensions which has come to be known as the 4d-5d lift [26].

The 4d black holes carry one extra charge which corresponds to a unit KK monopole at

the center of which the 5d black hole is placed. By making the modulus of the KK circle

small or large, the authors of [23] then argue that the entropy of the 4d and 5d black

holes are related. More precisely [24], the microstates of the 4d system can be counted by

putting together the microstates of the 5d system, and the states which are bound to the

KK monopole itself.

It turns out that putting together these two pieces gives a partition function which is

given in terms of the above mentioned Igusa cusp form Φ10. This function has modular

transformation properties under Sp(2, Z) which are much more powerful than those of

SL(2, Z) which govern the elliptic genus of a 2d SCFT. Using these modular transformation

properties, one can systematically deduce the sub-leading corrections to the 4d black hole

entropy [24, 27, 28].
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For the 5d black hole, the analysis in [21] used the related 2d SCFT SymQ1Q5+1(K3)

with L0 eigenvalue equal to the momentum n. The SCFT lives on a circle transverse to

the space where the black hole lives. In this 2d SCFT, one can apply the Cardy formula

to estimate the density of states at high energies. The Cardy formula is valid for energies

much larger than the central charge, i.e. n ≫ Q1Q5. There is a systematic procedure to

compute corrections to the Cardy formula [29, 30] in the parameter Q1Q5

n ≪ 1.

On the other hand, in the gravity theory, the configuration looks like a big 5d black

hole when the Schwarzschild radius is much larger than the string length. In the type II

theory on K3, this radius is given by
R2

Sch
l2s

= Q1Q5

n . One can now look at finer structures

and probe higher derivative corrections to the black hole entropy; these sigma model cor-

rections to supergravity will be governed by the small parameter n
Q1Q5

. This is exactly the

opposite regime to the one above where one can compute corrections to the Cardy formula.

One cannot therefore, naively compare the macroscopic corrections with the microscopic

corrections in the Cardy limit.

One thus needs a new tool to compute the sub-leading expansions of the statistical

entropy in the non-Cardy regime.1 Such a tool can be found by using the above 4d-5d lift

in reverse — we can rewrite the 5d partition function in terms of the 4d partition function

plus some corrections which physically have to do with the stripping off of the modes stuck

to the KK monopole. Mathematically, as we shall see in the following, this is expressed as

a precise relation between the 5d and the 4d partition functions. Having done this, we can

use the powerful mathematical properties of the function Φ10 to deduce systematically the

corrections to the 5d entropy.

1.2 Five dimensions v/s four dimensions

This new tool allows us to understand certain features of 5d black holes and contrast them

against 4d black holes. The first such feature is spacetime duality. The 4d duality group is

bigger than the 5d one, and in particular it contains the 4d electric-magnetic duality which

is absent in 5d. The manifestation of this duality which exchanges n ≡ Q2 ↔ P 2 ≡ Q1Q5

appears through the prepotential in the 4d gravity theory, to which worldsheet/membrane

instantons (depending on the duality frame) wrapping the T 2 contribute in a crucial way.

These instanton contributions complete the classical linear prepotential into a transcen-

dental function related to the Jacobi η function which is S-duality invariant. The entropy

function which depends on the prepotential is thus also duality invariant.

In five dimensions, one of the circles which these worldsheets/branes wrap becomes

large and the five dimensional supergravity does not see their effects, and only the con-

tributions P 2 ≫ Q2 are retained. The entropy function as we shall see only contains the

1This would not be necessary if one can map the counting problem to that of finding the density of

states in the Cardy regime of a different CFT. Indeed, as was observed in [19, 20], the entropy of the 5d

black hole which we consider can be expressed to subleading order as a Cardy formula of a putative dual

SCFT with L0 = Q1 and c = 6Q5(n+3). It would be very interesting to understand the microscopic origin

of such a SCFT with these values of charges. We thank the referee for pointing this out.

In the remainder of the paper, the phrase ”away from the Cardy limit” should be taken to mean ”away from

the Cardy limit of any currently understood microscopic SCFT, and in particular the D1-D5-p SCFT”.
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residue of the leading linear piece which is not duality invariant, which is consistent since

5d supergravity admits no such S-duality.

Our 5d microscopic counting formula matches the 5d gravity calculation in this regime

of charges Q1Q5 ≫ n; it also agrees to sub-leading order with the corrections to the

Cardy formula using the Jacobi-Rademacher expansion in the regime n ≫ Q1Q5. The

coefficients of the above two sub-leading corrections are not equal since they are not related

by any duality.

Finally, we use our technique to clear up a slightly confusing point in the literature

having to do with the 4d-5d lift. If we put 5d supergravity (+ corrections) on a background

Taub-NUT space of everywhere low curvature, the theory should still be valid. On such

a space, we can compute the entropy of a black hole sitting at the center which locally

looks 5d. It turns out that there is a subtle shift in the definition of charge in the 5d

theory having to do with the curvature of the Taub-NUT space, which changes the entropy

expressed in terms of the 4d charges. This small change as we shall show, agrees precisely

with the change computed by the 4d and 5d microscopic formulas.

The plan of this paper is as follows. In section §2, we present the five dimensional ef-

fective theory which arises upon reduction of type IIB string theory on K3×S1. At lowest

order, this is N = 4 supergravity in five dimensions. We then analyze adding four derivative

terms to this action and the corresponding black hole solutions. In section §3, we discuss

the Wald entropy formula in the higher derivative theory. We then apply it to the rotat-

ing BMPV black hole in five dimensions and present the corresponding corrections to the

Bekenstein-Hawking formula. In section §4, we present the microscopic counting formula

and compute the first correction to the large charge result. In section §5, we discuss the

4d-5d lift and the slight difference in 4d and 5d black hole entropies. We explain this differ-

ence through the different mechanisms in the microscopic and macroscopic understanding.

In section §6, we summarize our results and suggest future directions. In the appendix

we briefly sketch the evaluation of the contour and saddle point integral, some relevant

properties of the Jacobi functions and some details of the Jacobi-Rademacher expansion.

2 Black holes in five dimensional supergravity

In this section we outline the construction of black hole solutions in the presence of higher

derivative corrections, which were discussed in great detail in [14, 16]. The framework is

N = 2 supergravity in five dimensions coupled to nV vector multiplets. This theory can

be embedded in eleven dimensional supergravity compactified on a Calabi-Yau three fold,

where the lower dimensional theory will depend on the topological data of CY3. In the

remaining sections the discussion will focus on D1-D5-p system which corresponds to a

1/4 BPS black hole solutions in N = 4 supergravity. The enhancement of supersymmetry

amounts to choosing CY3=K3×T2 and the theory has a dual description in type IIB

supergravity on K3×S1.
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At the two-derivative level, the effective action is given by

S =
1

4π2

∫
d5x

√
g

(
−R − GIJ∂aM

I∂aMJ − 1

2
GIJF I

abF
Jab +

1

24
cIJKAI

aF
J
bcF

K
de ǫabcde

)
,

(2.1)

with I = 1, . . . nV + 1 and a, b = 0, . . . 4 are tangent space indices. The scalars M I can be

interpreted as volumes of two-cycles and MI the volume of the dual four-cycle, which are

related through the intersection numbers cIJK

MI =
1

2
cIJKMJMK . (2.2)

In addition the metric of the scalar moduli space is

GIJ =
1

2

(
MIMJ − cIJKMK

)
. (2.3)

The four-derivative corrections of interest are those governed by the mixed gauge-

gravitational Chern-Simons term

L1 =
c2I

24 · 16ǫabcdeA
IaRbcfgRde

fg , (2.4)

where c2I is the second Chern class of CY3. The overall coefficient is determined by the

M5-brane anomaly cancelation via anomaly inflow [31]. L1 by itself is not supersymmetric,

but by using the off-shell formulation of the supersymmetry algebra one can construct

the supersymmetric completion of (2.4). As discussed in [13], these corrections include

all possible terms allowed by the symmetry of the theory which involve the square of the

Riemann tensor. This is true under the assumption that the hypers decouple from the

theory, and therefore it is consistent to discuss configurations that only involve Weyl and

vector multiplets and multiplet.

Taking advantage of the off-shell formalism for the five dimensional theory, the con-

struction of black holes solutions is greatly simplified. The simplest way to obtain the

corrected solution is by first imposing BPS conditions, and then utilizing equations of

motion for the gauge field and auxiliary fields.

Backgrounds with unbroken supersymmetry allows for stationary solutions of the form

ds2 = e4U(x)(dt + ω)2 − e−2U(x)hmndxmdxn , (2.5)

where hmn is a 4D hyper-Kahler base space, and the particular case of Taub-NUT is

given by

hmndxmdxn =
1

H0(ρ)
(dx5 + p0 cos θdφ)2 + H0(ρ)

(
dρ2 + ρ2(dθ2 + sin2 θdφ2)

)
, (2.6)

with x5 ∼= x5 + 4π and H0(ρ) = 1 + p0

ρ . The rotation is described by ω = ω(xm)dxm, and

since we are interested in corrections to the BMPV black holes we will restrict the discussion

to self dual rotation dω = ⋆4dω. For the Taub-NUT base space this fixes the one-form

ω =
J

8ρ
(dx5 + p0 cos θdφ) . (2.7)
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The last piece of information from supersymmetry is given by the variation of the

gaugino in the vector multiplet. This results in a condition between the gauge field to the

corresponding scalar field

F I = d(M Ie2U (dt + ω)) . (2.8)

After exhausting the supersymmetry conditions, the equations of motion for the ex-

plicit action will further determine the full solution. The variation of the action with

respect to the gauge field, i.e. Maxwell’s equation, results in an exact harmonic equation

∇2

[
MIe

−2U − c2I

8

(
(∇U)2 − 1

12
e6U (dω)2

)]
=

c2I

24 · 8∇
2

[
2
(∇H0)2

(H0)2
− 2

ρ

]
. (2.9)

The term to the right of the equality arises from the from curvature of the base space

coupled to the gauge field through AI ∧Tr(R2), which behaves as a charge density governed

by the curvature of the base space. Solving (2.9) determines the scalar fields as

MI(ρ) = e2U

[
M∞

I +
qI

4ρ
+

c2I

8

(
(∇U)2 − 1

12
e6U (dω)2

)]
+ e−2U c2I

24 · 4

[
(∇H0)2

(H0)2
− 1

ρ

]
,

(2.10)

with M∞
I the value of the moduli at infinity. The constants qI are identified with conserved

5d charges by Gauss’s law, i.e. the integral of the conserved current associated with the

variation of the action with respect to AI . Writing (2.9) as the divergence of the current one

can identify the conserved current. In the absence of dipole charges, this is equivalent to

qI(Σ) = − 1

4π2

∫

∂Σ
⋆5

∂L
∂F I

, (2.11)

with Σ a spacelike surface and ∂Σ is the asymptotic boundary. As shown in [16] this integral

is sensitive to the geometry of the base space. For example, the Taub-NUT geometry

interpolates between R
4 at the origin and R

3 × S1 at infinity, and dialing the size of the

circle interpolates between a 4d and 5d black hole. Naively one might expect that (2.11) is

independent of the location of Σ, but the delocalized source in (2.9) amounts for the shift

qI(Σ∞) − qI(Σ0) = −c2I

24
, (2.12)

where the 5d electric charge is qI(Σ∞) = qI as defined in (2.10), and qI(Σ0) corresponds

to the 4d electric charge. Notice that this discrepancy appears after the inclusion of higher

derivatives; for the two-derivative theory the four and five dimensional charge are equal.

We will return to this shift in section §5 when discussing the 4d-5d lift.

The only function we haven’t specified so far is U(ρ). In the off-shell formalism, the

variation of the scalar auxiliary field modifies the special geometry constraint and for the

solution in question the equation reads

1

6
cIJKM IMJMK = 1 − c2I

24

[
e2UM I

(
∇2U − 4(∇U)2 +

1

4
e6U (dω)2

)
+ e2U∇iM I∇iU

]
.

(2.13)

By specifying the internal CY3 manifold and the charge vector qI , one can iteratively solve

non-linear differential equation for the metric function U(ρ) and fully specify the geometry.

– 6 –
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3 Macroscopic derivation of black hole entropy

Our discussion focuses on supersymmetric rotating black holes and the sub-leading correc-

tions to the entropy found in [16]. The corrections where found by exploiting the conse-

quences of the attractor mechanism [32–35] and utilizing the entropy function formalism.

Here we will briefly outline the key features of the procedure.

For a semi-classical theory of gravity described by a local action, the black hole entropy

can be obtained as a Noether charge associated to the diffeomorphism invariance of the

theory. This is the well known Wald’s entropy formula

S = − 1

8πGD

∫

Σ
dd−2x

√
h

∂L
∂Rµνρσ

ǫµνǫρσ . (3.1)

For two-derivative gravitational theories this gives Bekenstein-Hawking area law, i.e. S =
A
4G . In practice (3.1) is somewhat complicated to manipulate, specially if we are interested

in actions which contain higher powers of the curvature tensor.

As discussed in [12] one can reformulate (3.1) as a Legendre transformation of the

action for extremal black holes. The near horizon geometry of these black holes contain an

AdS2 factor which allows one to rewrite (3.1) as a functional of the on-shell Lagrangian.

Define the Lagrangian density

f =
1

4π2

∫
dxD−2√gL . (3.2)

The black hole entropy is given by2

S = 2π

(
eI ∂f

∂eI
+ e0 ∂f

∂eI
− f

)
(3.3)

Here eI and e0 are potentials associated to electric charge and rotation, respectively. To

evaluate explicitly (3.3) we need the on-shell values of the potentials as a function of the

charges, which is greatly simplified by the attractor mechanism

3.1 Attractor solution and black hole entropy

The near horizon geometry of an extremal black hole is governed by the attractor mecha-

nism. For supersymmetric configurations this highly constrains the geometry independently

of the precise action one uses. One feature of the attractor is that the values of the scalar

fields at the horizon are fixed by charges carried by the black hole, independent of initial

conditions at infinity. Additionally, the attractor enhances the solution to be maximally

supersymmetric at the horizon.

The rotating attractor solution in five dimensions is described by a circle fibered over

AdS2×S2,

ds2 = −ℓ2(1 − Ĵ2)(dx5 + cos θdφ + e0ρdt)2 + ℓ2

(
ρ2dt2 − dρ2

ρ2

)
− ℓ2dΩ2

2 , (3.4)

2 The derivation of (3.3) assumes gauge invariance of the action, which is not true for Chern-Simons terms

in discussion. The resolution is well understood and we refer the reader to [36] for a detailed discussion.
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where ℓ is the AdS2 radius and Ĵ is the potential associated with rotation. For simplicity

we set p0 = 1 in (3.4). The configuration also holds a 2-form flux carrying electric charges

and the corresponding gauge field is

AI = eIρdτ − e0eI

(1 + (e0)2)
(dx5 + cos θdφ + e0ρdt) . (3.5)

Here the potentials eI and e0 are related to the near horizon fields by

e0 = − Ĵ√
1 − Ĵ2

, eI =
M̂ I

2
√

1 − Ĵ2
. (3.6)

Both (3.4) and (3.5) are solely determined by solving the off-shell BPS conditions,

which assures that the background is an exact solution even after including higher derivative

corrections. The next step is to relate the charges (qI , J) with the potentials (M̂ I , Ĵ) and

the geometry governed by the scale ℓ. The modified special geometry constraint (2.13)

relates ℓ with the potentials,

ℓ3 =
1

8

(
1

6
cIJKM̂ IM̂JM̂K − 1

12
c2IM̂

I(1 − 2Ĵ2)

)
. (3.7)

By construction, the five dimensional rotation (2.7) is defined as

Ĵ =
1

8ℓ3
J , (3.8)

and after using (3.7) we have

J =

(
1

6
cIJKM̂ IM̂JM̂K − 1

12
c2IM̂

I(1 − 2Ĵ2)

)
Ĵ . (3.9)

Electric charges are defined as a conserved quantity associated to the variation of action

with respect to the corresponding gauge field. Evaluating (2.10) at the horizon, the electric

charge qI is related to the potentials by

qI =
1

2
cIJKM̂JM̂K − 1

8
c2I

(
1 − 4

3
Ĵ2

)
. (3.10)

Both (3.9) and (3.10) are obtained by taking the near horizon limit of the equations

of motion.

Given the attractor geometry (3.4)–(3.5), one can evaluate the full action including

higher derivative corrections to compute the entropy function (3.3). After some effort, the

semi-classical black hole entropy reads

S5d = 2π

√
1 − Ĵ2

(
1

6
cIJKM̂ IM̂JM̂K +

1

6
c2IM̂

I Ĵ2

)
(3.11)

The next step would be to write the potentials M̂ I and Ĵ as a function of charges and

rotation by solving (3.9)–(3.10), which would allow us to write S5d = S5d(qI , J). For

generic intersection numbers cIJK this can only be done perturbatively, but as we will

discuss below the equations are invertible for specific CY3 manifolds.

– 8 –
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3.2 Black holes on K3×T2

We are interested in corrections to the entropy of 1/4 BPS black holes in N = 4 with

internal manifold CY3=K3×T2. In the eleven dimensional language, the electric charges

qI correspond to M2-branes wrapping two-cycles. Equivalently, we can consider type IIB

string theory on K3×T2 and D1-D5-P charges. The D1-D5 system is extended in the K3

and the effective string extends along one of circles S1 of the T 2. The momentum P is

excited along the circle S1.

For CY3=K3×T2, M̂1 denotes the modulus on the torus and M̂ i the moduli on K3,

with i = 2, . . . 23. The non-trivial intersection numbers and second Chern class are

c1ij = cij , c2,1 = c2(K3) = 24 . (3.12)

For this specific manifold, equations (3.9) and (3.10) are invertible allowing to write (M̂ I , Ĵ)

in terms of (qI , J)

M̂1 =
√

1
2qiqjcij + 4J2

(q1+
c2
24

)2
(q1 + c2

8 ) , (3.13)

M̂ i = cijqj

√
(q1+

c2
8

)

1
2
qiqjcij+ 4J2

(q1+
c2
24 )2

, (3.14)

Ĵ = J
q1+

c2
24

√
(q1+

c2
8

)
1
2
qiqjcij+ 4J2

(q1+
c2
24 )2

, (3.15)

where we define cij as the inverse of cij . Inserting (3.13)–(3.15) in (3.11), the entropy as

function of charges becomes

S = 2π

√√√√1

2
qiqjcij

(
q1 +

c2

8

)
−
(
q1 − c2

24

) (
q1 + c2

8

)
(
q1 + c2

24

)2 J2 . (3.16)

Expanding to first order in c2 gives

S = 2π
√

Q3 − J2

(
1 +

3

2

Q1Q5

Q3 − J2
+ . . .

)
, (3.17)

where we identified the IIB charges as

Q1Q5 =
1

2
cijqiqj , n = q1 , Q3 − J2 = Q1Q5n − J2 . (3.18)

If all the charges qi, J scale equally, the expression to sub-leading order is:

S = 2π
√

Q1Q5n

(
1 +

3

2n
− J2

2Q1Q5n
+ . . .

)
, (3.19)

where the sub-leading dependence on angular momentum is due to leading supergravity

result. The higher derivatives terms give rise to corrections proportional to J as displayed

in (3.17), but are not important in this regime.

Summarizing, we have an expression for the sub-leading corrections to the en-

tropy (3.19) for rotating five dimensional black holes. These corrections come from the

supersymmetric completion of c2IA
I ∧Tr(R2). The macroscopic entropy (3.19) is what we

would like to compare with the microscopic counting formula.
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4 The microscopic degeneracy formula

The 5d counting problem of the D1-D5 system on K3 is captured by a (4, 4) two-

dimensional superconformal field theory along the worldvolume R × S1 with target space

SymQ1Q5+1(K3) [37]. We denote this sigma model SCFT by

X5d = σ(SymQ1Q5+1(K3)) . (4.1)

Two of the charges Q1, Q5 that the black hole carries appear in the definition of the

sigma model. The third charge momentum n and the angular momentum l appear as the

eigenvalues of the hamiltonian L0 and R-charge J0/2 of the sigma model. The charges are

related to the number of D-branes in the following fashion

Q5 = N5 , Q1 = N1 − N5 , (4.2)

because there is an effective negative unit one-brane charge generated by the five-brane

wrapped on the K3. The relevant object which captures the BPS states is the elliptic genus

χ(X5d; q, y) ≡ TrX
5d

RR (−1)J0− eJ0qL0 q̃L0yJ0 ≡
∑

n,l

c5d(Q1Q5, n, l)qnyl . (4.3)

To estimate the growth of the coefficients of this SCFT, we can use Cardy’s formula and

spectral flow in the SCFT

Ω ∼ exp

(√
c

6
L0 − J2

)
+ . . . (4.4)

Plugging in

c = 6Q1Q5 , L0 = n , J2 =
l2

4
. (4.5)

we get

Ω(Q1, Q5, n, l) ∼ exp(2π
√

Q1Q5n − l2/4) + . . . , (4.6)

The approximation (4.6) is valid at high values of L0, i.e. n ≫ Q1Q5. One can actually

systematically compute corrections to this result using an exact formula which determines

the fourier coefficients of the elliptic genus of a symmetric product SCFT in terms of the

fourier coefficients of the original SCFT (in this case K3) [38]. The formula relies on the

modular transformation properties of the elliptic genus under SL(2, Z) and uses the Jacobi-

Rademacher expansion [29, 30]. By its nature, it is expressed as a series of corrections to

the Cardy formula and can be used as above when L0 ≫ c, i.e. n ≫ Q1Q5.

On the other hand, the black hole entropy function is valid for large values of charges

when all the charges scale equally, i.e. Q1Q5 ≫ n ≫ 1. In order to meaningfully compare

the two expressions, we would need to re-sum the Farey tail expansion in Q1Q5/n and

reexpress it as an expansion in n/Q1Q5, which a priori seems to be a difficult problem.

However, we can make progress using the relation of the elliptic genus of the symmetric

product to the Siegel modular form Φ10. This is known as the Igusa cusp form and is

the unique weight 10 modular form of Sp(2, Z). Using the more powerful Siegel modular
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transformation properties and a saddle point approximation, we can compute the expansion

of the above elliptic genus for any regime of charges, in particular n/Q1Q5 ≪ 1. Physically,

this is related to the 4d-5d lift which we shall discuss in a following section. In this section,

we shall simply use this relation to our calculational advantage.

The generating function of the elliptic genus of the symmetric product is given by [38]

Z(ρ, σ, v) ≡
∞∑

k=0

pkχ(Symk(X); q, y) =
∏

n>0,m≥0,l

1

(1 − pnqmyl)c(nm,l)
, (4.7)

where we have set

q = e2πiρ , p = e2πiσ , y = e2πiv , (4.8)

and the coefficients c(n, l) are defined through

χ(X; q, y) =
∑

n,l

c(n, l)qnyl . (4.9)

For X = K3, this generating function is related to the Igusa cusp form Φ10 as [22],

Z(ρ, σ, v) =
fKK(ρ, σ, v)

Φ10(ρ, σ, v)
, (4.10)

where

fKK(ρ, σ, v) = p q y (1 − y−1)2
∞∏

m=1

(1 − qm)20(1 − qmy)2(1 − qmy−1)2

= p η18(ρ)ϑ2
1(v, ρ) . (4.11)

We are interested in the microscopic degeneracy of the system with charges

(Q1, Q5, n, l), which is given by the coefficient c(n, l) of the sigma model (4.1). This can

be expressed as an inverse Fourier transform of the generating function Z(ρ̃, σ̃, ṽ)

Ω5d(Q1, Q5, n, l) =

∮

C

dρ̃dσ̃dṽ e−2iπ(eρn+eσ(Q1Q5+1)+lev) Z(ρ̃, σ̃, ṽ) . (4.12)

The contour C in the above integral is presented in appendix §A. In the 4d theory, the

choice of contour was important for the analysis of BPS decays and the associated walls

of marginal stability. These decays happened precisely when the contour crossed a pole

related to the decay. These effects did not affect the power series expansion for the entropy,

but were exponentially small corrections in the degeneracy formula.

In five dimensions, it is expected from a supergravity analysis that there are no such

decays corresponding to real codimension one walls [39]. Note in this context that the

purely v dependent factors in the function fKK which have a zero at v = 0. These poles

therefore do not exist in the 5d partition function. It would be interesting to analyze in

more detail all the poles of the partition function in the 5d theory. However, for the purpose

of computing power law corrections to the entropy our analysis is sufficient.

– 11 –
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4.1 Saddle point approximation

We can solve the integral (4.12) in two steps as in [24, 27, 28]. First, we notice that

the dominant pole of the expression 1/Φ10(ρ̃, σ̃, ṽ) is not factored out by the function

fKK(ρ̃, σ̃, ṽ). We can therefore do a contour integral around this pole and the residue is

an integral over two remaining coordinates. This can be approximated by the saddle point

method to give an asymptotic expansion. We follow the method of [24, 27] of which we

present some relevant details in appendix §A. The actual evaluation only relies on the fact

that the charges n,Q1Q5, l are large and not on the relative magnitude of the two charges.3

We are interested in the answer to first order beyond the large charge limit, and to

this order it is given by

S5d
stat = S0 + S1 , (4.13)

which is to be evaluated at its extremum. The classical (S0) and first correction to the

large charge limit (S1) are

S0 = −2πiρ̃n − 2πiσ̃(Q1Q5 + 1) + 2πi

(
1

2
− ṽ

)
l , (4.14)

S1 = 12 ln σ̃ − ln η24(ρ) − ln η24(σ) + ln fKK(ρ̃, σ̃, ṽ) , (4.15)

with

ρ̃ =
ρσ

ρ + σ
, σ̃ = − 1

ρ + σ
, ṽ =

1

2
−
√

1

4
+ ρ̃σ̃ . (4.16)

Since we are interested in the answer to only the first order beyond the large charge

limit, we can extremize only the classical part S0 and evaluate the full expression (4.13) at

those values. By extremizing the classical functional S0 we obtain

ρ̃ =
i

2

Q1Q5 + 1√
Q3 − J2

,

σ̃ =
i

2

n√
Q3 − J2

, (4.17)

where4

Q3 − J2 ≡ (Q1Q5 + 1)n − l2/4 . (4.18)

Plugging (4.17) in (4.14)–(4.15) gives

S0(Q1, Q5, n) = 2π
√

Q3 − J2 (4.19)

3This fact was also used for computing the four dimensional black hole entropy in a region where Q2, P 2

are large, and one was much larger than the other [24].
4The shift of one in Q1Q5 is not important to sub-leading order in the black hole regime Q1Q5 ≫ n,

note the difference with (3.18). This shift will be important in the Cardy regime which we discuss below.
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and

S1(Q1, Q5, n) = −π
n√

Q3 − J2
− 24 ln η

(
l + i2

√
Q3 − J2

2n

)

−24 ln η

(
−l + i2

√
Q3 − J2

2n

)
+ 18 ln η

(
iQ1Q5

2
√

Q3 − J2

)

+2 ln ϑ1

(
1

2
− il

4
√

Q3 − J2
,

iQ1Q5

2
√

Q3 − J2

)
+ . . . . (4.20)

4.2 Supergravity limit

In the limit where all the charges (n,Q1, Q5, l) are large and scale uniformly, we can use the

expansion of the functions η(τ), ϑ1(v, τ) (appendix §B) and after dropping higher terms

we get

S1(Q1, Q5, n) = 4π

√
Q3 − J2

n
− π

Q1Q5√
Q3 − J2

+ . . .

= 3π

√
Q1Q5

n
+ . . . (4.21)

Combining (4.19) and (4.21), the full entropy formula reads

S5d(Q1, Q5, n) = 2π
√

Q1Q5n

(
1 +

3

2n
− l2

8Q1Q5n

)
+ . . . (4.22)

We see that this agrees with the macroscopic result (3.19) in the same regime of large

charges.

4.3 Cardy limit

In the opposite Cardy limit, when n ≫ Q1Q5, and Q3 − J2 ≫ 1 we can also expand the

result (4.20) to sub-leading order. In order to do that, we first need to use the modular

transformation properties of the various functions (appendix §B)

S1(Q1, Q5, n) = −π
n√

Q3 − J2
− 24 ln η

(
l + i2

√
Q3 − J2

2Q1Q5

)

−24 ln η

(
−l + i2

√
Q3 − J2

2Q1Q5

)
+ 18 ln η

(
i
2
√

Q3 − J2

Q1Q5

)

+2 ln ϑ1

(
−i

2
√

Q3 − J2

Q1Q5

[
1

2
− il

4
√

Q3 − J2

]
, i

2
√

Q3 − J2

Q1Q5

)

+2π
2n√

Q3 − J2

[
1

2
− l

i4
√

Q3 − J2

]2

+ . . . (4.23)
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Dropping terms of higher order in Q1Q5/n in (4.23) we get

S1(Q1, Q5, n) = 4π
n√

Q3 − J2
− 3π

√
Q3 − J2

Q1Q5

+π
n√

Q3 − J2
− π

n√
Q3 − J2

− π
n√

Q3 − J2
+ . . .

= 0 + O
(

1√
Q1Q5n − l2/4

)
+ . . . , (4.24)

which finally allows us to write the entropy as

S5d(Q1, Q5, n) = 2π
√

(Q1Q5 + 1)n − l2/4

(
1 + O

(
1

Q1Q5n − l2/4

))
+ . . . (4.25)

Note that unlike in the other limit, all the terms suppressed by 1/Q1Q5 have dropped

away, and the first sub-leading term is suppressed by 1/(Q3 − J2). This is exactly in

agreement with the more familiar Jacobi-Rademacher expansion to the same order which

we have sketched in appendix §B.1.

5 Clarifying the 4d-5d lift

The 4d-5d lift [26, 40–43] is a relation between a black hole in five dimensions carrying

three gauge charges plus angular momentum, and a black hole in four dimensions carrying

the above charges and in addition, a unit5 Taub-NUT charge. The angular momentum

in the five dimensions becomes a mometum along the Taub-NUT circle at infinity in four

dimensions. On application to a rotating BMPV black hole preserving 1/4 supersymmetry,

the 5d black hole can be related to a four dimensional 1/4 dyonic black hole. This relation

can be used to derive an exact counting formula for 1/4 BPS dyons in N = 4 string

theory [23, 24].

As a consequence of the attractor mechanism, the entropy of extremal black holes

is independent of asymptotic value of moduli. By tuning one of these moduli, one can

make the curvature of the Taub-NUT space large or small. Therefore it seems reasonable

to relate the entropy of 4d dyonic black holes with 5d black holes and the leading order

prescription [23] was

S4d(Q1Q5 + 1, n, l) = S5d(Q1Q5, n, l) , (5.1)

This equation however, will receive corrections6 at sub-leading order

S4d(Q1, Q5, n, l) = S5d(Q1, Q5, n, l)

(
1 +

c1

Q2
+ . . .

)
. (5.2)

The computation of these corrections boils down to computing the sub-leading corrections

to the 5d black hole entropy and comparing with the known sub-leading corrections to the

4d black hole entropy. The results of the previous sections fill in this gap, and we can now

5This has been extended recently to the case when there are multiple KK monopoles [25].
6These corrections are not related to the shift in the charges in (5.1).
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explain the origin of the small difference in the 4d and the 5d black hole entropy both from

the microscopic and macroscopic viewpoints.

In the regime of charges that all the charges are large and scaled equally, the 5d entropy

is (3.17), (4.22)

S5d(Q1, Q5, n, l) = 2π
√

Q1Q5n

(
1 +

3

2n
− l2

8Q1Q5n

)
+ . . . (5.3)

In the same limit, the corresponding 4d black hole with one additional Taub-NUT charge

is [see the review [28] and references therein]

S4d(Q1, Q5, n, l) = 2π
√

Q1Q5n

(
1 +

2

n
− l2

8Q1Q5n

)
+ . . . (5.4)

The discrepancy between the two expressions is essentially accounted for by the Taub-

NUT space whose small effects remain at all values of the moduli. The interesting fact

is that the actual micro and macro mechanisms are different. As we explain below, in

the microscopic theory, the Taub-NUT space gives rise to additional bound states, which

changes the degeneracy function, whereas in the macroscopic formalism, the Taub-NUT

space changes the final value of entropy because of a Chern-Simon coupling in the effec-

tive action. It is a non-trivial reflection of the consistency of string theory that the two

mechanisms in different regimes of parameter space account quantitatively for the same

effect.

5.1 Microscopic mechanism

The microscopic setup in type IIB string theory on K3 has a D1-D5-p system with the

D5 branes wrapping the K3, and the effective D1-D5 string with momentum p wrapping

a circle S1. The rest of the five dimensions is a KK monopole (Taub-NUT geometry)

which asymptotes to R
3,1× S̃1. The branes sit at the center of the Taub-NUT space where

spacetime looks like R
4,1. The counting of 1/4 BPS dyons is done by looking at low energy

excitations of this system. The counting problem effectively becomes a product of three

decoupled systems [24] which we can paraphrase as computing the modified elliptic genus

of the following 2d SCFT:

X4d = X5d × σ(TN1) × σL(KK − P ) (5.5)

X5d = σ(SymQ1Q5+1(K3)) (5.6)

The first factor which is a symmetric product theory which controls the 5d BPS count-

ing problem of the D1-D5 system. The piece σ(TN1) describes the bound states of the

center of mass of the D1-D5 with the KK monopole. The piece σL(KK-P) describes the

bound states of the KK monopole and momentum and is a conformal field theory of 24

left-moving bosons of the heterotic string, which can be deduced from the duality between

the Type-IIB KK-P system and the heterotic F1-P system. The presence of the second and

third factor is crucial for establishing S-duality and the wall-crossing phenomena in 4d.
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The degeneracy of the BPS states of the theory X4d is given in terms of the partition

function which is the inverse of the Igusa cusp form, the unique weight 10 modular form

of Sp(2, Z).

Ω4d(Q1, Q5, n, l) =

∮

C

dρdσdv e−2iπ(ρn+σQ1Q5+lv) 1

Φ10(ρ, σ, v)
. (5.7)

This partition function is understood by separately counting the three decoupled pieces in

the formula (5.5) above. The degeneracies of the theory X5d is given by a similar inverse

fourier transform (4.12) with a partition function Z(ρ, σ, v) which differs sightly from that

of the 4d theory.

The discrepancy between the two partition functions (4.10) is due to the factors

σ(TN1) × σL(KK − P ) which completes the 5d system into the 4d system. The

BPS partition function of the extra piece related to the KK monopole is precisely

fKK(ρ, σ, v) (4.10), (4.11). Physically, most of the entropy of the dyonic black hole comes

from the first factor in (5.5) which governs the 5d black hole, but a small fraction of the

entropy of the 4d black hole comes from the bound states of momentum and center of mass

with the KK monopole itself. This small fraction precisely accounts for the sub-leading

corrections to the 4d-5d lift formula.7

5.2 Macroscopic mechanism

As we reviewed in section §3 the macroscopic entropy of the black hole is given by Wald’s

entropy formula. In principle, one should find the full black hole solution and compute (3.1)

to obtain the entropy, but in the presence of higher derivative corrections this can be a

very difficult task. For extremal black holes the attractor mechanism greatly simplifies

the procedure, since only the value of the moduli at the horizon determines the entropy.

Further the entropy function formalism gives a simplified prescription to evaluate (3.1) and

obtain the black hole entropy.

In [14, 16] it was first noted that by using this procedure the sub-leading corrections

to the entropy for a 4d and 5d black hole differ and the difference is due to a shift of the

charges as given by (2.12). The shift is a consequence of the mixed gauge-gravitational

Chern-Simons term, where the curvature of spacetime acts as a source for electric charge.

In the 4d setup, the Taub-NUT space thus effectively absorbs some of the charge which is

placed at the center. If we measure charge using different Gauss spheres, the measurement

near the center of the taub-NUT space (5d) is different from that at infinity (4d).

6 Concluding remarks

We would like to finish the discussion by highlighting some of the implications of our results

and future directions for both the microscopic and macroscopic approaches.

7In the limit of large charges in which we evaluate the integral, the contribution from the KK monopole

piece comes purely from the ground state, and one can explicitly see the equivalence to the macroscopic

mechanism already at this level of the calculation. We thank the referee for pointing this out.
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The microscopic corrections to the black hole entropy that we found agreed with the

macroscopic supergravity theory with higher derivative corrections. The off-shell formalism

used to derive such corrections assures that the action is supersymmetric and insensitive

to field redefinitions because the off-shell algebra does not mix different orders. The match

with the microscopics to this order in α′ is therefore a more stringent test of string theory

than in the four dimensional case.

The equivalence between Wald’s formula (3.1) and the entropy function (3.3) relies on

the gauge invariance of the action. In this case, the conserved charge can be identified from

the near horizon data and it is defined as

QI =
∂f

∂eI
. (6.1)

In order to define the entropy function in the presence of Chern-Simons terms, one restores

gauge invariance by first adding total derivatives to the action and then dimensionally

reducing it [36]. For black holes on Taub-NUT this procedure will inevitably define a four

dimensional charge and the effects on the charges from the delocalized sources due to the

curvature of Taub-NUT will be overlooked. As it stands it seems as if in the presence

of the mixed gauge-gravitational Chern-Simons term a five dimensional charge cannot be

defined using f , and there is no extremization principle. Nevertheless, because of the

attractor mechanism, (3.3) evaluated on the solution will determine the same entropy as

defined by Wald’s formula. It will be interesting to determine in the semiclassical theory

the appropriate generalization of the entropy function that will capture delocalized effects

and define an extremization procedure.

On another front, it would be interesting to see if there is a way to understand — as

for the 4d case — the entropy of the 5d black hole in string theory when the various charges

in the system are not equally large (but their product is large). This would necessarily

involve taking into account the corrections due to worldsheet/membrane instantons which

are delocalized in the five dimensions.

Perhaps the above two questions can be attacked using a generalization of the entropy

function formalism to an integral over paths instead of minimization of a functional, as

suggested in [28]. It is possible that the 5d D1-D5-p black hole could be once again be

used as a testing ground for certain fundamental principles in string theory.
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A Some details of the evaluation of the contour and saddle point integral

In this appendix, we shall sketch some relevant details about the evaluation of the inte-

gral (4.12) which we recall here. Consider

Ω5d(Q1, Q5, n, l) =

∮

C

dρ̃dσ̃dṽ e−2iπ(eρn+eσ(Q1Q5+1)+lev) Z(ρ̃, σ̃, ṽ) . (A.1)

The integral above is over the contour

0 < Re(ρ̃) ≤ 1 , 0 < Re(σ̃) ≤ 1 , 0 < Re(ṽ) ≤ 1 ,

Im(ρ̃) ≫ 1 , Im(σ̃) ≫ 1 , Im(ṽ) ≫ 1 , (A.2)

over the three coordinates, where Re and Im denote the real and imaginary parts. This

defines the integration curve C as a 3-torus in the Siegel upper half-plane. The imaginary

parts are taken to be large to guarentee convergence. As we shall see below, the dominant

pole in the function is not affected, and we can therefore perform the contour integral

around that pole. This gives a prescription for the contour. As mentioned in the text,

it is expected that there is no dependence on the moduli in the 5d theory, and therefore

there are no other poles where wall-crossing behavior occurs in the 5d integral. A precise

analysis of the contour as was done in 4d [44] remains to be done.

We mostly follow [27] in the evaluation of the integral. First we need to do a contour

integral in the ṽ coordinate, which picks up the residue at various poles. These poles occur

at zeros of the function Φ10 and the poles of the function fKK. For large charges, the

dominant contribution when the exponent takes its largest value at its saddle point. This

was analyzed in [22]. When fKK is not present, this dominant divisor is

ρ̃σ̃ − ṽ2 + ṽ = 0 . (A.3)

We can check that the function (4.11)

fKK(ρ, σ, v) = p η18(ρ)ϑ2
1(v, ρ) , (A.4)

does not take away this pole, and does not alter the dominance of this pole. We can now

carry out the contour integration in the variable ṽ around the zero of the above divisor

ṽ± =
1

2
± Λ(ρ̃, σ̃) , Λ(ρ̃, σ̃) =

√
1

4
+ ρ̃σ̃ . (A.5)

In the contour integration, the variables ρ̃ and σ̃ are held fixed and we choose the negative

value of the square root ṽ−.

The modular properties of the function Φ10 under Sp(2, Z) allow us to factorize it

around the value ṽ = ṽ−. The integrand in (4.12) behaves like:

C exp (−2πi(ρ̃n + σ̃(Q1Q5 + 1) + 2ṽl)) σ̃12(ṽ−ṽ+)−2(ṽ−ṽ−)−2η−24(ρ)η−24(σ)fKK(ρ̃, σ̃, ṽ) .

(A.6)
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Using this factorization, we can evaluate the contour integral, and then perform a saddle

point analysis of the remaining integral over (ρ̃, σ̃). The contour integral for ṽ gives

Ω5d(Q1, Q5, n, l) = (−1)Q.P K

∫
dρ̃ dσ̃ eX(ρ̃,eσ)+ln ∆(ρ̃,eσ) , (A.7)

where K is a numerical constant and

X(ρ̃, σ̃) = −2πi (ρ̃n + σ̃(Q1Q5 + 1) − Λ(ρ̃, σ̃)l)

+12 ln σ̃ − ln η24(ρ) − ln η24(σ) + ln fKK(ρ̃, σ̃, ṽ−) , (A.8)

∆(ρ̃, σ̃) =
1

4Λ(ρ̃, σ̃)2

[
− 2πil + 2

ṽ−
σ̃

∂

∂ρ
ln η24(ρ) − 2

ṽ+

σ̃

∂

∂σ
ln η24(σ)

+
1

Λ(ρ̃, σ̃)
+

(
∂

∂ṽ
ln fKK(ρ̃, σ̃, ṽ)

)

ev=ev
−

]
. (A.9)

The above expression has to be evaluated at the saddle point. In the large charge limit

Q1Q5 ≫ 0 , n ≫ 0 ,
√

Q3 − J2 ≫ 0 , (A.10)

the saddle point of (A.7) is well approximated by the first line of (A.8), and in this limit

it is located at

ρ̃ =
i

2

Q1Q5 + 1√
Q3 − J2

, σ̃ =
i

2

n√
Q3 − J2

, (A.11)

which is the extremum given by (4.17). We can now estimate the above expres-

sions (A.8), (A.9) for the two relevant limits used in §4.1: the Supergravity regime, i.e.

Q1Q5 ∼ N2, n ∼ N and l ∼ N ; and the Cardy regime, i.e. Q1Q5 ∼ N , n ∼ N2 and l ∼ N

with N ≫ 1. For both regimes, (A.8) evaluated at (A.11) behaves as

X(ρ̃, σ̃) = (const)N3/2 + (const)N1/2 + O(1) , (A.12)

where the precise values of the constants are computed in section §4.1 for each regime. Next,

the subleading behavior of (A.8), (A.9) relevant for the saddle point approximation are

ln ∆ = − ln |l| + ln

(
1

4
+ ρ̃σ̃

)
+ O(1) ,

ln
(
det|∂2X|

)
= ln |l| − ln

(
1

4
+ ρ̃σ̃

)
+ O(1) , (A.13)

where ∂2X is the matrix of second derivatives of X with respect to ρ̃ and σ̃. Here, O(1)

refers to the above large charge expansion, and refers to the scaling as a function of N .

Finally, integrating (A.7) using the saddle point approximation, the statistical entropy is

given by

S5d
stat = ln

(
Ω5d(Q1, Q5, n, l)

)

= −2πiρ̃n − 2πiσ̃(Q1Q5 + 1) + 2πi

(
1

2
− ṽ

)
l

+12 ln σ̃ − ln η24(ρ) − ln η24(σ) + ln fKK(ρ̃, σ̃, ṽ) + O(1) , (A.14)
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evaluated at (A.11). From the above analysis, S5d
stat allows a systematic expansion for both

the Supergravity and Cardy regime.

Note that the function fKK does not have any poles in the interior of the region we are

considering, but has many zeroes. These zeroes do not include the divisor (A.3). Therefore

the dominant pole of Φ−1
10 remains the dominant pole of the 5d integrand Z. Note however

that fKK does have a zero at ṽ = 0 which takes away the pole at the same value of the

function Φ−1
10 . This means that there is no wall crossing behaviour in the five dimensional

theory due to this pole. For the evaluation of the integral, these observations mean that

the presence of the function fKK changes the analysis only through its appearance in the

entropy function (4.13) to be extremized.

B The Jacobi η and ϑ functions and their properties

We define

q = e2πiτ , y = e2πiv . (B.1)

The Jacobi eta function is defined as

η(τ) = q
1
24

∞∏

n=1

(1 − qn) . (B.2)

The odd Jacobi theta function is

ϑ1(v, τ) = −2q
1
8 sin(πv)

∞∏

m=1

(1 − qm)(1 − qmy)(1 − qmy−1) . (B.3)

For large imaginary values of τ = it, t → ∞, we have q → 0 most of the terms in the

product become unity and these functions admit an expansion of the form

η(τ) = − π

12
t + . . . (B.4)

These functions satisfy the modular properties:

η

(
− 1

τ

)
=

√
−iτη(τ)

ϑ1

(
v

τ
,−1

τ

)
= i

√
−iτeiπv2/τϑ1(v, τ) . (B.5)

For the ϑ function, the expansion depends on the value of v compared to τ , but similar

expansions are possible.

B.1 The Jacobi-Rademacher expansion

The Jacobi-Rademacher expansion [29, 30] is a very powerful (exact) expansion containing

both power law and exponential corrections to the Cardy estimate. Here, we are only

interested in the first power law correction, which can be estimated by using a Jacobi

modular transformation and a saddle point expansion.
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The counting of 1/4 BPS states of the D1-D5 system on K3 is summarized by the

elliptic genus of the 2d SCFT Symk(K3) with k = Q1Q5 + 1. This elliptic genus can be

expanded in a theta function decomposition

χ(Symk(K3); τ, z) = −
k∑

l=−k+1

∑

n∈Z

c(n, µ) qn−l2/4k θl,k(z, τ) (B.6)

≡ −
k∑

l=−k+1

hl(τ) θl,k(z, τ) . (B.7)

We write

hl(τ) =

∞∑

m=0

Hl(m) qm− l2

4k . (B.8)

We can estimate the value of the coefficients Hl(n) when n ≫ k using the Cardy’s formula

after doing a modular transformation on the elliptic genus and performing a saddle point

expansion

Hl(n) = (const) eπil k

(4nk − l2)
1
2

I3/2(2π
√

nk − l2/4) + . . . , (B.9)

where the dots denote terms which are exponentially suppressed. There is actually an

exact formula which captures all the exponentially sub-leading terms [29, 30] which we

don’t need here.

Here I3/2 is the modified Bessel function of the first type. The index 3/2 appears

because the weight of the vector valued modular form Hµ(z) is w = −1
2 . Note that

by definition, the elliptic genus has weight zero, but the θ functions have weight +1
2 , so

the functions Hµ have weight −1
2 . This function in fact has an expression in terms of

elementary functions

I3/2(z) =

√
2

πz

(
cosh(z) − sinh(z)

z

)
. (B.10)

The entropy is the logarithm of the degeneracy Hµ(n). With k = Q1Q5 + 1, we have

z = 2π
√

(Q1Q5 + 1)n − ℓ2/4. The entropy is equal to

S5d = ln

(
ez

[
1 − 1

z

])
+ . . . (B.11)

= 2π
√

(Q1Q5 + 1)n − l2/4

(
1 +

1

4π2(Q1Q5n − l2/4)
+ . . .

)
, (B.12)

which is in agreement with (4.25).
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